
REPORT 1148

A SPECLiL INVESTIGATION TO DEYELOP A GENERAL METHOD FOR .
THREE-DIMENSIONAL PHOTOELASTIC STRESS ANALYS~ 1

By M. M. FROCRTand IL GIJIFiENSmY,JR

SUMMARY
The methodof 8train nwmurezwni am annealing b reoiewed

and found to be unw%factoq for themderiub awiluble in

this country. A new, geneid methodh dixcrihedfor the phdo-
ekw?icdetermindion of the principal tiresme & any poiqt of a
general body subjected to arbitrary liazik. Tlu method has

been applied i% a 8phere subjected to di.ametd comprestiw

[oads. The T& 8hOUJpo86-ibi1di&3 of high ar%ura.ey.

~TItODUCTION
It is known that purely photoelastic procedures cannot

solve the general three-dimensional stress problem. The
photoelastic method furnishes five independent equations,
whereas the complete specification of the state of stress at.
a point requiressir relations to determine six unknown stress
components.

In order to obtain a sixth relation it has been suggested
that the frozen slices removed from the model be amealed
and strain measurements be made after annealing. This
suggestion has recently received a rather extensive treat-
ment from Prigorovsky and Preiss in Russia (reference 1).
A careful rmalysis of this suggested method shows that its
successful application requires model materials having
relatively low values of Poisson’s ratio- at the elevated
temperatures used @ the freezing process. Such materials
me not available in this country. I?osterite and- Bakelite,
which are the best available materials, have Poisson’s
ratios approximately equal to 1/2. It is further shown that
the method of strain measurement after amealing breaks
down when this ratio approaches 1/2.

In this report a new method is described which does not
depend on Poisson’s ratio and therefore can be used with
models made of Fosterite and Bakelite. This method
employs frozen stress patterns from normal and oblique
incidence. The separation of the principal stresses is
obtained by the numerical integration of one of the diiler-
ential equations of equilibrium in Cartesian coordinates
rather than by strain measurement after annealing which
involves Poisson’s ratio. It will be shown that this permits
the determination of all six stress components at each point
of a body.

The report consists of three parts. The fit part com-
prises a survey and analysis of the method in three-dimen-
sional photoelasticity which rests on the freezing and slicing
processes rmd strain measurement after amealing. The

second part presents the theory of the new method. The
third part contains the application of the new method to
the determination of stresses in a diametrically compressed
sphere.

The investigation was conducted in the Photoelastic
Laboratory of the Mechanh Department at the Illinois
Institute of Technology under the sponsorship and with the
financial assistance of the National Advisory Committee
for Aeronautics. The Research Corporation provided the
funds for the fellowship held by Mr. Roscoe Guernsey, Jr.
Mr. David Landsberg, Assiitant Research Engineer in
Experimental Stress Analysis, assisted in all experimental
phases of the work. It is a pleasure to acknowledge his
cooperation. Acknowledgment is also due Mrs. Dora L.
Fro&t for her assistance in the translation of the paper by
Prigorovsky and Preiss (reference 1).
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SYMBOLS

normal stmwx, psi
shearing stresses,psi
st&ses on an inclined plane, psi
principal stmssea,psi
secondwy principal stressesin XY-plane, psi
seeondwy principal stressesin X2-plane, psi
normal stresaeain fringes
shearing Streswain hinge9
fringe orders at normal incidence for slices

parallel to XY-plane, XZ@ane, and
I“’plane, respectively

fringe orders at oblique incidence for rota-
tions about Y-axis and Z-axis, respectively

angle of rotation of a slice; also angle detin@
an inclined plane,

isoclini~ parameters at normal incidence for
slices parallel to XY-plane, X2-plane, and
Y.Zplane, respectively

isoclinic paramekr at oblique incidence for
rotation about Y-axis

shear fringe value of slice, psi per fringe
shear fringe value for slices parallel to iXY-

plane and X.Z-plane, respectively
shear &inge value for actual ~~ht path in

slices rotated about Y-axis
shear fringe value of material, psi per fringe

per inch
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linear strains
Young’s modulus, psi
Poisson’s ratio
load, pounds
area of equatorial plane of sphere, square

inches
area of surfacea of contact, square inches
radius of sphere, inches
radius of contact areas, inche9
normal stressesin terms of P/A
shearing stresses in tm of P/A
contact pressure in twm of P/4

\

contact shearing stress in terms of P/At

SURVEY AND ANALYSIS OF EXISTINGMETHODS
FROZBN STRR3SE9 AND OBLIQUB IN13DENCE

Frozen pattern,-It is now well established that elastic
stress systems can be fixed or frozen into models made of
certain diphase plastics and that such models with frozen
stresses can be sliced into thin sections without disturbing
the fixed pattern (references 2 to 5). Observations of such
slices in a polariscope yield the relative retardations as well
as the isoclinic parameters at each point of the pattern.

Oblique incidence,-The use of oblique incidence of a
collimated beam of light, .as suggested by Drucker and
Mindlin, adds materially to the information obtainable
photoelastically (references 6 and 7). The retardation and
isoclinics at normal incidence are a function of the secondary
principal stres9e9in the plane of “the slice, while those at
oblique incidence depend on the secondary principal stmssea
in a plane perpendicular to the wave normal at each point
of the slice.

The basic relation for oblique ~cidence with rotation
about the Z%& is given by the following expression

(2Fn#=--&= { [(uz–uz)+(u~–u~ sin’ &+Ti-n a %]’+
4(T= COS(?=+ Tw Sill 8=)’} (1)

The system of notation used in this report is eho-ivnin
figure 1. NorqmI stresws are positive when tensile and
negative when compressive. The four components of shear
in the ~-plane are referred to either as th8 Tzp or thO ~E
shear system, and the sign of this system is positive when
the sheming components are as+mwn in figure 1- (reference
S, par. 1.3). Similarly the shear system in the I’Z-plane
is positive if the Compotientsare as shQwn in figure 1. No
signs are attached to individual shearing stress components,
their directions being determined by inspection (reference
s, par. S.2).

By combining the data from five stresspattarns of different
obliqueness it is possible b determine the three diilerences
between the normal strew components and the three sysm
of shearing stressesat each point in the slice (fo: convenience
the plane of the slice is taken as one of the cooidmaiw plane9).

It can be shown that from the five quantities obtained
with the aid of oblique incidence it is possible in turn to
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FIGURE I.—Positive normal stm components and positivesystems
of shearing strwee.

obtain the three principal shears at all points of the section.
This is equivalent to determinbg Mohr’s circle for a threo-
dim&sional state of stressexcept for its origin which remains
indeterminate.

Limitationsof purely photoelastio data.—Except for special
c.a.w, the optical data by themselves are insu5cient for the
determination of the individual principal stres+ea, This
limitation results from the fact that isotropic stres9 systems
produce no photoelaatic effects. Consequently, two states
of stress differing by an arbitrary isotropic system produce
equal photoelastic effects.
- The method employing scattered light, or tho Tyndall
eilect, which was developed in this country by Weller
(references 9 and 10) and independently by Menges (refer-
ence 11) suflkre from the same limitdion.

The method of cm.wergent light employed by Hiltscher
(reference 12) and by Kuske (reference 13) makes it possible
to determine also the directions of the principal stresses but
not their magnitudes.,-

SRPAR4TTONOF PRINCIPALSTEI?3SES

Free surfaces,-The limitation mentioned above does not
hold at free boundary surfaces. A. bee surface is-subjected
to only two principal strewes, similar to those in plane stress
systems. Tangential slices yield directly the diilerenco
between the principal surface stwwes. If in addition a slice
is taken normal to the surface and parallel to one principal
stress, it is possible to determine the individual principal
stresses on the surface (@. 2). This ‘method has been em-
ployed by Leven and Frocht (reference 14) to determine
the principal stresses on the surface of Diesel engine valves.
Leven (reference 15) has @so applied this method to the

\
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iiFIGURE2.-WWS ~nddirectionsof ght for determination of surface
stressm. L, dfrec~ionof light.

problem of surface stressesin torsion, and Het6nyi (reference
16) has applied it to threaded connections. In these appli-
cations the faces of the slice were oriented to be normal to
the direction of a collimated polarized beam.

In special cases the combination of oblique and normal
incidence leads to a complete determination of the principal
stresses. Using this combination, the stress distribution in
Saint Venant torsion was determined (referenw 17).

planes of symmetry,-l?or the special case where a plane
of symmetry exists Jessop (reference 18) has developed an
extension of the Lam6-Maxwell equations @iIon’s graphical
integration) to three-dimensional cases. By means of these
extended equations it is possible to determine the stresma
along the axis of symmetry. However, the method la*
generality.

&rain measurement after annealing.-lt has been sug-
gested by Kuske (reference 5) that mechanical stiain
memurements ftfter annealing in conjunction with the

.

freezing method might be used to provide the additional
relation necessary for the determination of the principal
stressesat a general point. If it be awuned that the di&r-
ences between the three nornd stress components at a

point have been found phot.oelastically from equation (l),
there rewlt:

1

u=—Ug=Cq
.

–cCT~—u=— ~ (2)

)Uz— u== c=

where the C’s represent constants. If now the slice horn the
model containing the hzen stmssea is annealed, the state
of stress is relieved and the thickness of the slice at each
point will return to its original unstressed value. From this
change in thicknem, if it can be measured with accuracy,
the strain at a point in a “directionperpendicular to the slice
mn be computed. Taking this direction as the Z-axis, for
instance, the strain would be q. Then from Hooke’s law,

e.=+[a=–J’(uz+ur)] (3a)

which may be written as

~.=+ [(1—2LJ)UZ+V(UZ-UY)+V(U=-U=)] (3b)

horn which
~z=l+v(u.- U.)—P(UZ—u,)

l—2v “’
(4&)

In view of equations (2) this gives the stiess component u,
after which u= and U. are readily found. The entire state
of stress haa thus been determined.

LIMITATIONS OF MECHANICAL STRAIN M13ASUREhlENT

Poisson’s ratio equal 1/2.—The method outl@ed” above
would seem to solve the problem and offer a poiverful method
of attack. (loser examination discloses certain serious dif-
ficulties. For the photoelastic materialsused in this country,
such as Fosttite and Bakelite, Poisson’s ratio is very nearly
1/2 at the elevated temparatureaused in the freezing process,
and for this value of v the method breaks down.

Thus, inspection of the general equations of Hooke’s law

~.=; [(7=—v(u#+ u.)]

e.=+[U*–L’(U.+U.)]

●.=+ [u.—V(U=+UJ]

o

(5)

shows that when u,= u~= u,, that is, when the stresses form
an isotropic system, and, in addition, the value of Poisson’s
ratio v is 1/2, then

~=eu=ez=o
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In other -words, isotropic systems of stresses produce no
strains. Hence, two stress systems d.iileringby an arbitrary
isotropic system produce the same strains. Thus, when
Poisson’s ra$io is 1/2 a given strain field does not determine a
unique stress field, although the converse is not true. Strain
measurement when v= 1/2 thus adds nothing to the-genmd
solution of the three-dimensional problem.

Poisson’s ratio nearly l/2.—If Pobon’s ratio is slightly less
than 1/2, the method of strain measurement after annealing
should theoretically lead to a solution. However, other
difficulties tie. Equation (4a) may be written as

~z=Ee=–v(c.+cd
1—2V

(4b)

If vis the true value of Poisson’s ratio and v+-Av is its experi-
mentally determined value, then the error Au, in. the com-
puted stress u.’= u.-I-Au. for a measured c. is

Uz’—uZ=AUZ=,1-&2Av ‘“z+””) (6a)

With v very close to 1/2, a vwy small error AUin Poisson’s
ratio may lead to large errors Au, in the computed stress.
For instance, if v=O.48 is assumed, which is the approximate
value for Fosterite, and AUis taken as only 0.01, then

Aaz=~ (tTz+IJv)=0.50(cT=+aJ (6b)

Experimental measurements of v.—Experiments with the
determination of Poisson’s ratio for Fosterite and similar
plastics indicate that it will be rather difhcult to determine
the v.idue of v closer than +5 percent. The error Au. in
equation (6b) would be particularly large when a= and u~
happen to be of the same sign and each is large in comparison
with u,. All things considered, no great accura~ can be
expected from this method so long as Poisson’s ratio is
nearly 1/2. ~

It must be pointed out, however, that strain measure-
ments may serve a useful purpose. Assuming that, in some
wrLy or other, the normal stress components have been
found, the strains can be calculated and compmed with
those found experimentally. Here the error in the computed
strains due to an error in Poisson’s ratio is givan by

o

AC== –; (UZ+UV)AV . . (7)

which is not large.

METHOD SUGGESTED BY PRIGOROVSXY AND PIWZSS

The method -outlined above for the separation of the
principal stresses which employs oblique and nornd inci-
dence of collimated polarixed light and strain measurement
after annealing is nok the only possible procedure. Pr@-
rovslgy and Preiss suggest two alternative methods in refer-
enw. 1. Their procedures combine (1) stress patterns from
normal and oblique incidence-w-id (2) axis patterns from

convergent polarized light and (3) strain measurements after
annealing. The significant point lies in the fact that their
mei%od utilizes strain measurement after mneding and
therefore breaks down when Poisson’s ratio equals 1/2,

THEORYOF SHEARDIFFERENCEMETHOD

GeneraI theory,-A method for determining stresses in
three-dimensional problems is now proposed which is com-
pletely gerierd. With this method the sis stresscomponents
at any point may be found. It is essentially an extension
to three dimensions of the method, long and effectively USOCJ
for plane problems, which is known as the shear difference
method (reference 8, ch. 8).

Y Y

//////////
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FIGURE3.—Ausiliary ELM in XY- and XZ-planes for shesr differonco
method.

Consider an arbitrarily loaded unsymmetrical model with
the set of coordinate axes as shown in figure 3. Let Qstraight
line AB be drawn through point i from boundary to bound-
ary and let this line be taken m the X-axis. At any point
along this line the fit differential equation 0$ equilibrium,
with body forces neglected, is

(8)

ahd upon integration the stress at any point j is given by

((J)

where (u=)=denotes the stressat poiut A and (u=)j, the stress
at any other point j on the line AB. The partial derivative
2Mw/@ is the rate of change of rfi with respect to y and
br*/& is the rate of change of r= with respect to z. Thus
if values of TVware computid along a line through i parallel
to the Y-axis and the curve Tp.=j(y) were plotted, then

c)
~ would be the slope of the cwe j(y) at point i.a~ ~

r)Siiarly + , is the slope of the curve Tl==g(z) at point i.

As in the plane problem, these slopes may be approsinmted
by computing the shearing stresses at points near i on oppo-
sitesides of the line AB and forming tite difference quotients,
Thus, choosing neighboring points Cland D in the XY-phme
and similarly points E and F in the XZ-plane,

.
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(1Oa)

(1Ob)

Thus if the shearing stresses can be determined along four
auxiliary lines, parallel to and on opposite sides of AB, two
lines in the XY.-plmie and two in the X.Zplane, one has all
the data necessary to obtain the quotients on the right side
of equations (10) and hence good approximations tQ the
partial derivatives. In evaluating equa$ions (10), care
must be taken to attach the proper signs to the shear systems
r~=and r=, as in figure 1.

Substituting the above approximations for the partial
derivatives in equation (9) and replacing the integrals by
summations, the following equation is obtained:

h h(u&= (uz)=- ~ ~ Ax– ~ ~ AZ (lla)l

Thes um.nmtionsare evaluated graphically in the same man-
ner asin plane problems. For convenience, Ayand Az may be
takennumerically equal to AX. Then equation (1la) becomes

(a..),=.+* A,=**AT= (1lb)
a a

in which A~tizand Arm have the mean value in each
interval Ax.

Shearing stiesses in fist slice.-In order to carry out this
integration, it is necessary tQ determine the magnitude and
direction of shearing stressesr. along the two auxiliary”linea
in the XP-phme and of ~. along the two auxiliary @es in
the XZplane. The shearing stresses T- are obtained from
a slice in the XY-plane containing AB in its middle surface.
The stress pattern of this slice from normal incidence will
give the difference between the secondary principal stmwes
in the plane of the slice at all points, and tie corresponding
isoclinics furnish their orientation. The magnitude of the
shearing stress ~Vzat any point will then be given by

%=; (P’ –q’) sin 24’ (124

where p’ and q’ are the secondary principal stresses in the
XY-plane and # is the isoclinic parameti. The directions
are determined by inspection aa in paragraph 8.2 of reference
8. Using equation (12a), the shearing stresses ~w along the
auxiliary lines and along AB itself may be found. .

Shearing stresses in seoond slice.-A second slice lying in
the .XZ-plane and containing line AB would furnish similar
information for T=. Here a practical d.i.flicultyarises since
the fit slice removes an essential pmt of the second slice.
One of severrd procedures may be used to el@ninate this
difliclllty.

(1) In the general case two identical models, identi&dlv
loaded, may Fe
XZ slice. The

used, one for the
shearing She3Se8

XY s~ce and”one for th~
7= for the XY slice are

I

calculated from equation (12a). Similarly, the .Aehg
stresses T= for the X2 slice are given by

-wherep“ and q“ are the secondary principal stressesand +“
is the isoclinic pimwneter in the XZ slice.

(2) In large models it may be possible to use a sub slice
from the main slice for determining T=. After the data me
obtained from the main slice, a small section containing the
line AB is cut from it, as shown in @ure 4 (a). The neces-
sary data in the XZ-plane are then obtained from normal
ticidence on the sub slice, as shown. This procedure is
feasible if the model is large so that the main slice can be
made of sui%cientthickness.

(3) In the particular case where a plane of stresssymme~
exists, such as the XY-plane in iigure 4 (b), advantage can
be taken of this symmetry. Referring to figure 4 (b), let it

+2!!!i.
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(a) Sub slice.
(b) Lmded model.
(c) Slit= from opposite sides of plsne of symmetry.

FICWJW34.-Sohemstiu disfcmm of necessaryslices.
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be assumed that the stresses on line AB are recwired. The
first slice is made parallel to the ~-plane and ‘mntains the
line AB as shown in &ure 4 (c). The orthogonal dice is
cut from the opposite side of the body so that it contains the
symmet&-ally placed line A’B’, along which the stressesare
the same as along AB itself. The necessary shearing stresses
are calculated as outlined in procedure (1), above.

Normal stresses.-The starting value (u.)=will be obtained
from boundary conditions and boundary fringe orders. The
integration may then be tied out and values of u= ob-
tained along A13. Further, from Mohr’s circle or othm,
considerations: . .

(u.–aP),= (#-q’)j cos 2#j=2F’n’j cos 24’, (13a)

(u.–u.),= (p’’-q”), cos 2#’’j=2F’’n”j cos 24”, (13b)

wh’ere the F’s and n’s denote, respectively, fringe value of
the model in shear and moe order at point j. From
equations (13a) and (13b)

(a~)j= (Uz)j– @’–q’)j COS2r$’j ‘ (13C)

(u.),= (u=),– @“-(f’), Cos2&’, - (13d)

All the necessmy data for the evaluation of (ax), and (uh,
are obtained from the, slices in the Xl?- and -XZ-planes,
respectively.

lJse of oblique inaidenae.-At this stage five of the six
stress components, namely u=,a~, u,, 7,=, and ~a, have been’
found at all points of AB. There remains one unknown
stress component ~V.. The shear system ~,. has no influence
on the stress patterns from normal incidence for either one
of the slices but will have an effect on the patterns from
oblique incidence.

FIGURE 5.—Normal incidence and oblique ihcidence for different
directions of rotation.

In order to find the shear system ~,, an oblique stre&s
pattern is obtained horn either one of the two slices. For”
concreteness assume that the slice parallel to the XZplane
is used and that it is rotated in a clockwise direction about
the I%& through an arbitrary angle 8.. Figure 5 shows
a view of a small element as seen &m the positive end of
the I%& From equation (1) the frirge ordw TZtiat any
point due to the obIique incidence is given by

2F&nti=
d

[u,– (u%cos%,+az sin%r–~= Kin20,)]’+
4 (~,=00s 0~—rs.sin O,)S (14a)

in which u., Uv,and u. are the known normal stresses
and 7- and Tzz are the known E&em systems. Ako the

isoclinic parametex dorfoi the oblique incidence is given by
the expression .

(160)

If the rotation about the y-axis be made in the counter-
clockwise direction then

2F8v%p.=
[%- (u’. C’os%%+a, sin’d.+~zz sin 24)]’+,

4(T= sin ev+ryx COSOti)a (14b),
and

(Mb)

Siar equations may be written for rotatidn of the slico
paralM to the X22plane about the Z-W& .

It is to be noted that in general the retardation observed
at any point depends on the direction of rotation of the slim.
For one direction of rotation the fringe order at a point wiLl
be di.ilerent bm its value for the other direction. In the
particular case when the slice contains i principal phumj
then ~n=~m=O and equations (14a) and (14b) becomo
identical. In such cases the direction of rotation is im-
material. In dealing with general slices it is importwnt to
note carefully the direction of rotation relative +tothe wwo
normal and to attach the proper signs to all the stresses.

Each of equations (14a), (14b), (15a), and (lfib) may bo
‘solved fOr the unknown shear system TtiS. It is necessary
ordy to determine the fki.ngeorder and the isoclinic parameter
48, along the Ii.neAB. If the rotation is counterclockwim
equation (14b) or (15b) is appropriate. Of these, equation
(15b) is much the simpler. Using equation (15b) and 0=46°
there is obtained

-JTVZ— 2F8jin~usin !w- Tn (16c)

With this, ry, is easily computed. All six components of
stress are thus determined for the point i, and therefore the
principal stresses themselves are determined at the given
point.

Extension to the plastic state,-It should be notod that
the method described in @is report is not limited to a lirumr
stiess+ptic law. With minor modifications, wbiclI are
sta~d below, the method is equally valid for a nonlinear
stress-optic law. Thus,. the method is applicable not only
to the elastic state but also to the plastic state ‘of the model.
This follows from the fact that the only equations, in addition
to the stres-optic law, are the equations of equilibrium
which are independent of strew-strain relations.

In order to adapt the equations to a nonlinear stress-optic
law it is necessary to observe that whereas in the linear
range fringes can be used as the unit of stress, sinco the
stress is proportional to the fringe order, in the ncm+?inear

range fringe3 cunmot serve a3 tlb unit of 8tres8, since propor-
tionality between stress and birefringence no longer exists.
To obviate this &fFicul@ all fringe orders in the equations
should be converted into standwd units, say pounds per
square inch, as was done in all preceding equations,
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Now, let the nonlinear stress-optic law be given by

7.a=&–q)/2=T(n)

where ~(n) is a known function of n. If one replaces the
products FXn by ~(n) in equations (14) and (15) these
equations are directly applicable to a nordin;ar stress-optic
law. It should, however, be noted that the results will
rLpplyto the model only and are not directly transferable to
the prototype. It is also observed that the photoelastic
models am assumed.to be free from str@-hwdening.

Effeot of Poisson’s ratio.-In conclusion, it should be
notcd that in transferring the results from threedimensional
photoelastic models to metal prototypes the effect of Poisson’s
mtio will have to be considered. It is fortunate, as shown
by the theoretical solutions obtained to date, that the effect
of Poisson’s ratio on the most significant stresses is small
(references ]9 and 20).

APPLICATIONOF SHEARDifference METHODTO
A DIAMETRICALLYCOMPRESSEDSPHERE

DE9CR1ITION OF APPARATUS

Tho apparatus used in this investigation consisted of the
following items:

(1) An electric furnace with temperature controls and
built-in loading frame with special jigs

(2) An 8-inch photoelastic polariscope with a speciaI im-
mersion tank

(3) An oblique incidence jig
(4) A Babine&Soleil compensator

A photograph of the electric furnace is shown in figure 6.
This is a relatively large oven 46 inches high, 42 inches wide,
and 19 inches deep. It is fitted with automatic temperature
controls by means of which any desired thermal cycIe could
be imposed on the model. The furnace was equipped with
a built-in loading fkame suitable for the application of all
basic types of loading.

A special loading jig built for the investigation is shown in
figure 7. It consisted pf y smooth circularshaft about 1/2
inch in dihmeter passing through a-pair of smooth, lubricate~-
guide holes carefully alined so lhat the axis of the shaft was
perpendicular to the base. The load was applied to the top

FIQUaE 6.—Electric furnace&d control panel.
3!?1OOGGG-O1

FIQURE7.—lkading jig and model of sphere.

of the shaft through a hard steel ball. This jig was found
to give ahnost perfect vertieal loading and the friction was
negligible.

A special jig was also built for oblique incidence. The
frame of the jig can be rotated about a vertical axis through
,say desired angle which. ma .eg.silybe measured to one-tenth
of a degree. The slice was mounted in the frame of the jig
and the whole unit was placed in an immersion tank with
a suitable mixture of Halowax and mineral oil.

The remaining equipment was standard apparatus in
photoelastic laboratories, the descriptions of which are avrd-
able in the literature.

TEST PROCEDURE

. Model,—The sphere vm.s machined from a cylinder of
I?osterite which was previously annealed to reduce initial
stresses. The machining was carried out in a lathe. The
rough cylinder of Fosterite was iirst turned to a true cylinder.
In order to form the sphere a tool bit was set in a special jig
riding on the carriage of the lathe. This bit could be rotated
about a vertical axis lying in the plane of the lathe centers.
The cutting was performed by swinging the tool bit by hand
around its vertical axis while the cylinder was rotating, and
the rtiius of the sphere was slowly reduoed.by brinbfig the
tool bit gradu@ly closer to its axis. In this way it was
possible to shape the complete sphere mcept for a relatively
small nipple near the chuck. The final diameter of the
sphere was 3.313+0.002 inches.
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Loading,-The sphere was placed in the loading jig apd
carefully alined for diametml compressive loading. The
model wrw then heated to 162° F in the electric furnace, the
rate of heating being about 10° F per hour. A load of 172
pounds was then applied to the model. After a soaki.w
period of about 2 hours the temperature was-lowered at the
rate of 4° F per hour to room temperature. The ii.mil
diameter of the equatorial plane was found to be 3.334 inches
rmd the load axis was messured as 3.102 inches. Altho~~h
relatively large deformations were developed in the loaded
regions, the main body of the sphere was not notably dis-
torted from its origtial shape. The stress pattern of the
whole sphere in figure 8 shows that the loads and the stresses
were rotationally symmetrical. .

-.
llmmm S.-Stress pattern of whole sphere.

Slicing.-In preptwation for slicing *e center lines of all
the slices were carefully scribed on the sphere using the flat
spots in the loaded re+$ons as datum planes. The slices
were then sawed out roughly on a bandsaw to a thickness
of about 3/8 inch. They were subsequent& ground by hand
to about l/8-inch tihiclme.win m-oatcases. Cheat care was
taken to keep the slices symmetrical with respect to theh
centar lines.

Figure )9 chows the slicing plan. The first slice removed
was parallel to the equator and midway between the equator
and the load point. Then horn the opposite side of the
sphere a meridian slice was removed. Next a slice contain-
ing the equatorial plane was cut. Finally. a slice parallel to
the meridianslice and halfway out on the radius was removed.

I

-A

F—#,-j

I?mmm 9.-Slicing plan for sphere. 1, slice ptwallel to equator; 2,
meridian slice; 3, slice parallel to meridian; and 4, equatorial S1lCO,

Stress patterns and isoolinics.-The slices were mountad
in the oblique incidence jig and stresspatterns at nornml rmd
oblique incidence were recorded photographically. Typical
stresspatterns are shown in figures 10 to 15. Most of the
normal incidence patterns show very few fringes. In order
to obtain accurate data in thes6 c+es a Babinet%leil com-
pensator was used to obtain the fringe-order distribution
along the lines of interest by point-by-point exploration.

—-—. —-—.-. - . .—. .—

FIGmm 10.~trw pattsm of meridian slice at normal inoidcmco.

.

.

/
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FIGURE1I.-Stress pattern of meridian slice for a rotation of 45° about
Y-ads.

m

FKNJnD 12.-StresE pattern of slice parallel to equator at normal
incidence.

A black cross was made on the screen to mark the point on
which attention should be centered. The model slice was
then adjusted until the line of interest.on the image ran true
on the intersection of the crow as the straining frame was
moved laterally. Then beginning at the outer edge and
moving the strain~~ frame by a lmown amount after each
observation the fringe order was obtained at a series of
points fdong the line. From these data the curve of fringe-
order dis~ibution was plotted.

\ M0284

FIGUEE 13.-Strw9 pattern of slice parallel to equator for a rotation
of 45° about X-afi. .

,. s

—.—. .2- —.—. —. .4
l?m~+ -14.+t~ “pattern of slice parallel to merklia~:,at.normal

<. inoidence. c.
G.-. “.. “c

It may be ~oted &at fractional ~~e ordeti can also be
obtain&i by the T@& method of compensation, the accu-

&ble with that of the Babine&Soleil ~racy being com
compematim,’ ‘*&

Isoclinic li&s %m-recorded by one of two methods. For
the over-all picture the isoclinic lines were photographed in
most cases (figs. 16 and 17). From the photo.~phs aver-
aged sketches were prepared and used in making the cal-
culations. .Onseveral lines direct sketching of the isoclinics
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fiG~ 16.-8tre& pattern of slice parallel to meridian for a rotation
of 45° about Y-tis.

.

●

L-80287 ,

__— . . . — .—
Fmmm 16.—Typical isoclinic for meridian slice.

bmihLLd
Ihmmm 17.—Typical isoclinic for slica paraUel to meridian.

was used with attention being confined to the particular lino
of intere9t. H&e the intersections of successive isoclinic
lines with the line of interest were obtained at wry short
intervals, from which the distribution of the isoclinic pmam-
et-zs alomg the line could be plotted. This method was
found to be accuratp and considerably less time consuming
than the photographic method. White light was used in all
isoclinic work.

In plane stres systems the isoclinic parameter at a point
on a free boundary is determined by the tangent to the
boundary at the point. The isoclinic parameter thus
changes from point to ~oint along the boundary in general,
This is not necesswiiy true for isoclinics of secondmy prin-
cipal strw.ww. In the slice parallel to the meridian the
secondary principal stresses at the boundary consist solely
of one normal stress u. which is horizontal. The boundary
is therefore a zero isoclinic and no other isoclinic may inter-
sect the boundary at any point. The higher order isoclinics
therefore all lie within the boundary forming clomd loops
in this ca9e, as shown in iigure 17.

Fringe value.-The fringe value of the material was ob-
tained from a small cylinder about 1/2 inch in diameter and
l% inches 10W. This was loaded in comprwion in th~
special loading jig used for the sphere and subjected to the
same thermal cycle as the sphere. A portion of the cylinder
was machined away to leave a V shape as shown in figure 18.
The re@ting stresspattern was then photographed (fig. 19).
The V shape was used to make clearly tible the fringe of
zero order occurring at the sbaxp edge of the wedge. In tho
cylinder itself the ii-retfew fringes crowd together near tlm
boundary of the cylinder and it is practically impossible to
identify the zero fringe. From the stress pattern in figure
19 it was a simple matter to plot friige order against posi-.
tionj which for the wedge described is a straight line (fig. 20).

t

Fmurw 18.—Crcss seotion of calibration member after mrtohiningof
wedge.
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FIQUnE19.-StreM pattern of calibration member.

POJion,tirbifroryiifs

FIWJRB 20.—FrfPge order for calibration member as a function of
distance from edge of wedge.

h this way the fringe order at the point where the plane
fuces of the V intersect the curved boundary of the cylinder
could be accurately detepnined. At the same point the
thickness h could also be mywred accurately. With the
measured fringe order and thickness the fringe value 2j of
the material was found to be 3.0 psi per fringe, per inch
compression.

EESULTS
Interior stresses,-The stress clistr ibution was obtained

nlong SLYlines passing through the interior of the sphere.
The lines are indicated in figure 21 by the letters A–A, B-B,
GC, D-D, E-E, and F–F. Thus the six lines are defined
m follows:

A-A intemection of meridian slic13with equatorial slice
B-B intersection of meridian slice with slice parallel to

equator
GC intersection of slice parallel to equator with slice

parallel to meridian
D-D load line
E-E intersection of equatorial slice with slice parallel to

meridian

F-F intersection of slice parallel to the meridian slico
with a meridian plane which is perpendicular to it

In this problem advantage was taken of the symmetry of
the sphere to eliminate the need for two models as discussed
in the theoretical part of the report: In particular because
o{ the rotational symmetry. of the stresses one meridkn
shce could be taken te represent all meridian slices.

k
FrGuwz 21.—Lina in sphere along whioh stress dfstributiomq were

determined.

Typical calculation.-In order te make clear the application

of the method the complete calculations for line GC will

now be given. The evaluation of the stresses along this

line requires all the generality which would’ be encountered

in a body devoid of symmetry. The basic data for the

determination of the stresses on this line are obtained

from the strew patterns and. isoelinics at normal incidence

of the two slices defining the line GC and from the stress

pattern and isoclinics of one of the slices at oblique incidence

with rotation about an axis perpendicular to C-C and lying
in the plane of the plate.

Beeause of the sym.me~ of the stresses along C-C it is
necessary only to deal with half the length of the line. This
half length was divided into 10 equal subditilons. The
two necessary auxiliary lines ~~re- drawn parallel to it in
each of the two orthogonal planea and spaced the length of
one subdivision apart.

The ii-et step is b obtain the distribution of the shearing
stresaeaalong line GC and along the four auxiliary lines.
This requires the determination of the distribution of the
secondary principal stress dif%renees and of the iseclinics
along these lima. Figure 22 shows the curves of n’” and
@‘“ for the slice parallel to the meridian, and @ure 23
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Fmmw 22.—Distribution of fringe order n’” and isoclinia parameter
~’” for line GC and two auxiliary linw in slim parallel to meridian.
In curves II and III the letter c denotesthe Y-coordinate of line GC

I I I I (m

FIWJRD23.—Distribution of fringe order m“ and isoclinio parameter
4“ for line GG and two auxiliary lines in slice parallek to equator.
In curves II and III the letter c denotes the X-coordinate of line GC

shows n“ and 1$”for the slice parallel to the equator.- With
these data the required shearingstressesare computed at each
ditilon point of C-C. Thus, foJlowing equations (12) and
expressing tie stressesin terms of fringw,

~n=; ~fff & 24’” (16a)

It will be noted that for positive valuea of z the shear systein
nv, is positive and % is negative.

As noted in the theoretiosl part of the report the integra-
tion requires the use of the difference between tie shearing
s&zses at the center of each subdition. These cMlweIws
are obtained horn the curves representing the distribution
of the shearing stresses just found. F@e 24 sho~ the
curves of the shear diiference9 for the two slices.

The next step is to obtain the value of the normal stress
n. at eaoh division point by an integration of one of the dif-

I I -& I I A 4

I v I \ I

&
COi

FIGURE24.—Dfstribution of shear differences A?qj, and An.,
for line GC.

ferential equations of equilibrium. The integration is car-
ried out by approximation using summations to replace tho
integrals. The appropriate equation for line C-C is similax
to equation (ha), thaj is,

.
(nJj=(n=).– h 25 Az@+ ,A%~ (17n)

c

Choosing Az=AY=Az the ratios of these quantities nm unity.
The signs of the rntios depend on the choice of axes and the
direction of integration. The integration begins at the
boundary and proceeds inward. Consequently Az is nwga-
tive. The shear differences have been formed in such a way
that Ay is positive and AZ negative. The final form of tho
equation is therefore

(n.)j=(n.).-t-&w--*A% “ (17b)
e c

The signs of the shear differ&cea are as shown by the curves,
In order to start the integration the value of (n,), is

required. This must be determined from ‘the boundary con-
ditions and boundary fringe orders. From the f~ct thnt tho
boundary is unloaded it is evident thnt the principal stress
normal to the bounduy is zero. Inspection of the meridian
slice shows that, excepting the loaded regions, the boundnry
stresses in the mOridian section are’ fdso zero. Tho fringe
order at the boundary of the slice parallel to the equator is
0.58 fringe tension, and the direction of this stress makes an
angle of 55.6° with line C-C. The boundw v~ue of n, is
thus found from the equations of stress transformation as
follow’s:

(7zJc=0.58 cod 55.6°=0.185

The expression for (nJ j therefore takes the form

5’ hzl(nJ,=O.185+ , A%– ,

- The integration is easily carried out in tabular
shown in table I.

(18)

(17C)

form as
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Once n. has been found the values of n. and ~ are found
from expressions similar to equation (13c), that is,

. nz=nz—n” cm 24” (19a)

nV=n,—n’” cm 2#~’ (19b)

This computation is shown in table II.
TIIe last step is to determine the remain@ shearing stress

system nn. This was obtained in this case from. oblique
incidence on the slice parallel to the meridian with rotation-
through 45° about the ~-axis. Figure 25 shows the fringe
order and isoclinic distributions along C-C for this case.
With these dat~ and the known vihws of n,. previously
determined the required shearing stress component is found
from an expression”similar to equation (15c). Thus

The results of this computation are shown in table III..
This completes the solution for all six stresscomponents along
line C-C. In order to determine the stress components in
pounds per square inch it is necewmy only to multiply the
stressesin fringes by the proper fringe value of the slice.

~ Using methods similar to those just explained the stress
components for all six lines have been determined. WM
the exception of line D–D integration began at the boundary
and proceeded inward. For line D–D the starting point was

I

.
0 .2 .4 7’

4’
48

40

a%

taken as the center of the sphere and integration proceeded
upward. The starting value of n. for this line was taken to
be that obtained from line A–A. The results of these com-
putations are shown in figures 26 to 32. At the center of the
sphere the stresscomponents were found to be u~= —2.59P/A
and U==u==0.45P/A. T&se values gay be compared with
the stressesat the center of a disk under diametrsl compres-
sion which are Ur= —1.91P/A and Crz=0.64P/A. -
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FImJIUI 26.—Dietribution of nu. and ~. along line C-C for a
rotation of sli~ parallel to the meri&n a&mt the Y-ax&.
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FIGURE 28.—Distribution of normal stre along line C-C.
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MGUSE 29.—Distribution of shearing stresses along line GC.
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Fmmm 30.—Dtilbution of stressa along line D-D.

FIGwm 31.—Distribution of sb’esm% along line E-E
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FIGURE32.—Distribution of stressw along lino F-F.

Contact stresses at load points.-As noted previously the
loads on the-sphere produced considerable 10W1deformation
which resulted in flattened arons at tie poles. Upon obscu-
ration of the meridian slice it was found that fringes and
so clinics were unusually clear right to the loaded boundaly.
[t was therefore possible to continue the integration all the
way to the loaded boundary along lines normal to the rwens
jf contact and thereby to obtain approximations to the con-
kwt stresse3. The stresscomponents at the ends of line D-D
represent the contact streasea at the poles, that is, at the
:enters of the loaded areas. In order to determine, at least
roughly, the actual distribution of the contact stresses over
the loaded areas two additional slices normal to the londecl
zones were cut horn the remaining material of the sphere.
The intiections of these slices with the meridian slico then
Mine two lines parallel to line D–D which extend from line
B-B to the loaded boundary. Starting values were taken
kom the stress distribution on line B–B previously obtained,
md integration proceeded to the loaded boundary in Lhe
w.ualfashion. In this way the contact stressesat two points
>t different distances from the center were obtained. With
these three points the distribution of the normal stresses on
the contact surface could be pretty well determined. The
Aearing stresses,acting on the surface of contact were found
Eromthe values of n’ and the isoclinica# in a meridian section
in the region of contact. The results are shown in figuro 33,
the directions of the shearing stresses being from the poles
outward.

Checks on accuraoy.-Two types of checks are availnble
in this problem, static checks and checks between stresses on
difEerentlines.’ Static checks were made from the stresses
on lines A–A and B-B and from those acting on o diameter
in the surfaces of contact. Since these stressesme rotation-
ally symmetrical the resultant force acting on the equatorial
plane and on the plane containing line B–B parallel to tlm
equator as well as on the plane of contact can be determined
by integration. From the stresses,on line A–A the resultant
load on tie equatirinl plane was computed ss 176 pounds,
which is 2.3 percent higher than the applied load of 172
pou@s. The stresses on line B-B gave a resultant of 168
pounds which is 2.3 percent low. Lady the resultant of
the normal stresses on the surface of contact w.ae found to
be 170 pounds, or 1.2 percent low.
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FIQUIUI33.—Dfstribution of stresses on surfaces of contact.

Points O’ and 01’ (fig. 21) are common points on d.i.tlerent
lines. The stresses at these points can be determined-from
each line and the results compared. The stressesat O’ were
found by integrating along line B–B and also by integration
nlong the prLthAOO’. From line B–B the stresses were
found to be ~= –4.08 and %=n,=O.40. From the path
AOO’ they were found ti be n.= –4.o0 and n==nz=0.42.
At 01’ the stresses are found from lines C-C and F–F.
l?rom line C+2 the stresses were computed as ~= – 1.12,
n.= –0.36, n.=0.43, and nn=0.62. From line F–F they
were n.= –1.14, n== – 0.39, n,= O.40, and nw=0.66. The
agreement in these values is seen to be quite good.
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FIGmm 34.-Sketch relating stresscomponents at a point on line E-B
ta themeon line C-C. .

3~169&fi~6~ .,

It is also possible to compute the stresses on lima C-C
and E-E from the stresseson lines A–A and B–B. Figure 34
shows the rectangular stress components on lines C-C and
B–B. The necessary equations for transformation”are simi-
lar to the familiar equations for inclined planes in plane
stre9ssystems, that is, -

a=+U*
g8 =

- 7+: “; auCos20+ r~ sin 20 (21a)

U*— Uy
—— sin 28—7- Cos287g— 2

(21b)

The stresses compukd by transformation were compared
with the stressesindepczndentlydetermined on lines C-C and
E-E by integration. The comparative values are shown in
figures 28,29, and 31. The general agreement is seen to be.
excellent.

Check by the Lam6-Maxwell eqnations,-hnes A–A and
D-D are lines of symmetry for the sphere. For these special
lines the stressescan be computed by the method outlined
by Jesaop (raference 18) using the extension of the Lsrn6-
Maxwell equations to three dimensions. This computation
has been carried out using fringe orders from the meridian
and equatorial slices and the 5° isoclinic from the meridian
slice. The comparative values are given in @gure 26 for
line A–A and in figure 30 for line D-D. Inspection of the
fqguresshows that in both casea the agreement is close.

ANALYSIS AND DISCUSSION

The primary objective of the project under discussion was
to develop a general method for solving three-dimensional
problems photoalastically. In the theoretical part of @is
report such a method is described. The experimental work
shows that the proposed method is practical.

It is too early to drrim broad conclusions regarding the
general accuraq- of the new method. However, the excel-
lence of the static checks and the consistency of the results,
as shown by the close cross checks between the results from
the various lines, seem to indicate possibilities of high ac-
curacy. Unfortunately there is W yet no theoretical solution
available for this particular problem to furnish conclusive
checks and a measure of the errors? Nevertheless there is a
reasonable degree of certain~ that the major stresses are
free horn aignitlcant error.

It must be pointed out that &e stresses as found here
represent the solution for a material for which Poisson’s
ratio is 0.48, wh~eas most structural materials have Poisson’s
ratios of about 0.3. This is an inherent limitation of three-
dimensional photmlasticity. However, as noted previously,
the theoretical solutions available to date indicate that
Poisson’s ratio has only a small influence on the m~jor stres9es
although the effect on the minor stressesmaybe pronounced
(references 19 and 20).

Although no theoretical solution is available for the sphere
-Hertz’s s@tion ,can be used to check the contact stresses

jA tbwwtkalwlationofthispmblamhaswntly beanpnblbhed.(Seerefemnm2L)
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determined photoelastically. According to Hertz’s solution

the contact pressure is representable by the ordinates to a

hemisphere erected on the contact surface. J?urther the

Hertz theory predicts that the maximum contact pressure

should be 1.5P/& Reference to &we 33 shows that the
e.sperimentaIIy determined value of the maximum pressure
is 1.s3P/&, which is 2 percent high. When it is considered
that the path of integration used in determining the maximum
preeaure led along an equatorial radius to the center and
thence up the load asis to the surface this is indeed a remark-
able check. The general distribution of the pressures is
also seen to be substantially &rect. The proposed method
would therefore seem to hold considerable promise for the
determination of contact stresses.

According to the Hertz theory the two principal stresses
in the plane of the qontact surface at the pole, us and u~,

1+2V
should each equal ~ UV. For Poieson’s ratio of 1/2 this

reduces to u*= u,= Urwhich indicatea that an isotropic point
esists at the pole, and therefore the shearing slmss is zero
at,this point. This is borne out by the photoelastic results.

Along the circular boundary of the surface of contact the

()
I—2V P

stress consistsof a pure shear bf the amount — —3 A
according to the Hertz theorg. If Poisson’s ratio is IJ2 this
expressionmm.ishes. Hence the normal and shearing stresses
at the boundwy should be zero. The photeelastic results
are seen to give this vaIue.

The problem treated in this report has complete rotational
symmetry which simplifies the experimental technique by
eliminating the use of two models. No problem has as yet
been solved ‘which requires two models. The use of two
models will no doubt introduce complications, but no insur-
mountable ditliculties are smticipated. However, further.
work must be done to demonstite the effectiveness of the
proposed method with two models.

There remains aIso the possibility of using sub slices horn
the main slice as discussed in the theoretical part. The
model used in this investigation was not large enough to
make this procedure feasible although some attempts were
made. This possibility also needs to be further explored.

It will perhaps also be desirable to repeat the solution of
the sphere with smallerloads in order to reduce the relatively
large local deformations. .

SUMMARYOF RESULTS

The results from thiEinvestigation to develop a gened
method for three-dirne&ional photoelastic stress analysis
may be summarized as follows:

1. The method of stmhn measurement after annealing
cannot be. used with the “%haterialsnow available in this
country. . .

2. A general photoelastic method for obtaining six stress
components at any point of an unsymmetrical body arbi-
trarily loaded has been developed. This method does not-
depend on Poisson’s ratio, although the resuhs reflect the
physical constants of the model.

3. The new method is applicable in the plastic range of
the model.
- 4. The method shows possibilities for the determination
of contact stresses

5. The stressesexisting in a sphere subjected ,to diametml
compression have been determined with considmable
accuracy.

6. At the center of the sphere the stress components were
found @ be UN=–2.59PJA and U==u,=0.45P/A, where P is
the load on the sphere and A is the area of the equatorial
plane of the sphere. These values may be compared with
the stressesat the center of a @sk under diametral compres-
sion which &e u.= –1.91P/A and u.=0.64P/A.

7. Further work is needed to determine the full potentiali-
ties of the method wheh two models are used. Further work
is also needed to determine the practicability of sub slices.

ILLINOIS INSTITUTE OF TECHNOLOGY,

GucAQ016, ILL., Sep@mber 16, 1961.
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